skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Howard C. Gifford, C. Ross"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Developing PET reconstruction algorithms with improved low-count capabilities may provide a timely and costeffective means of reducing radiation dose in promising clinical applications such as immuno-PET that require long-lived radiotracers. For many PET clinics, the reconstruction protocol consists of postsmoothed ordered-sets expectation-maximization (OSEM) reconstruction, but penalized likelihood methods based on total-variation (TV) regularization could substantially reduce dose. We performed a task-based comparison of postsmoothed OSEM and higher-order TV (HOTV) reconstructions using simulated images of a contrast-detail phantom. An anthropomorphic visual-search model observer read the images in a location-known receiver operating characteristic (ROC) format. Acquisition counts, target uptake, and target size were study variables, and the OSEM postfiltering was task-optimized based on count level. A psychometric analysis of observer performance for the selected task found that the HOTV algorithm allowed a two-fold reduction in dose compared to the optimized OSEM algorithm. 
    more » « less